Current Design & Construction Practices For Micropile Supported Foundations of Electrical Transmission Structures in North America

Nickolas G. Salisbury Steven A. Davidow, P.E., S.E.

Crux Subsurface, Inc.

Electrical Transmission Market

- More than 35% increase in demand over last 20 years in North America
- Increased demand for renewable energy sources (Hydro, Wind, Solar)
 - Alignments traverse remote, environmentally sensitive and rugged terrain

Typical Electrical Structure Types

Tubular Steel Pole

Self-Supporting Lattice

Guyed Lattice

Foundation Types

- Conventional Transmission Structure Sites
 - Predicated upon conventional access
- Traditional Foundation Types:
 - Drilled Shaft
 - Mat Foundation
 - Grillage
- Cost Effective

Foundation Types

- Difficult to Access, Environmentally Sensitive Sites, or Challenging Geotechnical Conditions Require Alternative Foundation Options
 - Mountainous Terrain
 - Wetlands
 - Unpredictable geotechnical conditions
 - Sites where road building is not feasible or permitted

Protected Wetlands

Micropile Foundations

- Micropiles Provide an Ideal Foundation Solution
 - Lightweight ground transportation and helicopter portable equipment and materials
 - Small area of construction impact
 - Adaptable to a wide variety of geotechnical conditions
 - Develop high capacity in tension, compression, and lateral (composite micropiles)

Project Examples

- Sunrise Powerlink Project
 - 188 km, 500 kV alignment
 - California, United States
 - Self supporting structure loads (per leg):
 - 1000 K Compression
 - 900 K Tension
 - 400 K Shear
 - Geotechnical Conditions:
 - Sedimentary deposits overlying bedrock
 - Primarily granitic bedrock with localized volcanic rock
 - Corrosive soils in the coastal area

Project Examples

- Northwest Transmission Line
 - 343 km, 287 kV alignment
 - British Columbia, Canada
 - Guyed and self supporting structures
 - Loads (per leg):
 - 400 K compression
 - 350 K tension
 - 140 K shear
 - Geotechnical Conditions:
 - Highly variable depth to rock
 - Fluvial sands/cobbles/boulders overlying glacial till or bedrock
 - Bedrock consisted of medium to fine grained sandstone, siltstone, and shale

Solution

- Utilize Helicopter Portable Equipment and Materials
 - Drills
 - Platforms
 - High pressure air
 - Testing equipment
 - Grout transfer units
 - Threaded bar and casing
 - Steel pile caps
- Also Beneficial for Light Ground Based Access

Solution

- Composite Micropiles Installed in Circular Array
 - Omni-directional capacity
 - Casing provides flexural resistance and fixity with cap
 - Reinforcing bar and grout provide axial capacity

Solution

- Pile Installation and Field Characterization
 - Drilling first pile allows for site characterization (US Patent Pending)
 - Utilize foundation schedule to calibrate installation to design
 - Vary quantity of piles, cased length, and bond length based on site characterization

• Steel Pile Caps Introduced to Both Projects as an Alternate

Benefits

- Prefabricated under high level quality control
- Galvanized
- All bolted connections
- Faster construction time
- Better schedule control
- Increased project safety

Challenges

- Complicated geometry and analysis
- Fixity with piles no welding
- Adaptability with site variable pile quantities
- Difficult to galvanize thermal stresses

Steel Cap Drawings

 WRAP WELDS AROUND OPENINGS AND EDGES OF TIE PLATE FOR GALVANIZATION (SEAL WELD)

- Welded series of plates
- Omni-directional variation
 Between 12, 6, 4, and 3 pile
 configurations
- Fixity between pile and cap
- Worked with fabricator to develop galvanization process and weld inspection protocol

Finite Element Analysis

- Shell elements
- Review of peak stresses and deflections
- Review of potential buckling of plates
- Estimate of foundation rotation
- More accurate weld design
- Allowed for design refinement and reduced cap weight

Finite Element Analysis

- Conflict resolution
- Shop/fabrication drawings

- Full Scale Load Test
 - Calibrate FE model through full scale testing
 - Applied 1000 K compression and 350 K shear simultaneously
 - Resulting deflections closely match FE predictions

Concrete Pile Caps

- Concrete Caps are utilized when larger rotational capacity is required
- Benefits
 - More efficiently support larger overturning loads
 - Fixity between cap and pile easier to attain
 - Corrosion protection by concrete cover
- Challenges
 - Longer construction time
 - Affected by weather
 - Lower QC reliability

Concrete Pile Caps

- Strut and Tie Analysis
 - Caps are controlled by shear failure
 - Compact sections with little flexure
 - Model concrete section as a system of compression struts and tension ties
 - More desirable distribution of reinforcing

Concrete Pile Caps

- Conflict Resolution
 - 3D Modeling of Reinforcing and Micropiles
 - Determine tolerance between components
 - Develop shop drawings for reinforcing fabrication

Concluding Observations

- Traditional foundation methods will continue to be advantageous in conventional access environments
- Transmission projects will continue to be forced into areas with non-conventional access or challenging geotechnical conditions
- Miropiles are a proven and reliable foundation solution for a variety of non-conventional construction applications
- Continued innovation in micropile design and cap construction will broaden the applications for micropile construction

Questions and Answers